The spectral properties of the preconditioned matrix for nonsymmetric saddle point problems
نویسندگان
چکیده
منابع مشابه
A Preconditioned Scheme for Nonsymmetric Saddle-Point Problems
In this paper, we present an effective preconditioning technique for solving nonsymmetric saddle-point problems. In particular, we consider those saddlepoint problems that arise in the numerical simulation of particulate flows—flow of solid particles in incompressible fluids, using mixed finite element discretization of the Navier–Stokes equations. These indefinite linear systems are solved usi...
متن کاملSpectral properties of the preconditioned AHSS iteration method for generalized saddle point problems
In this paper, we study the distribution on the eigenvalues of the preconditioned matrices that arise in solving two-by-two block non-Hermitian positive semidefinite linear systems by use of the accelerated Hermitian and skew-Hermitian splitting iteration methods. According to theoretical analysis, we prove that all eigenvalues of the preconditioned matrices are very clustered with any positive...
متن کاملA Class of Nonsymmetric Preconditioners for Saddle Point Problems
For iterative solution of saddle point problems, a nonsymmetric preconditioning is studied which, with respect to the upper-left block of the system matrix, can be seen as a variant of SSOR. An idealized situation where the SSOR is taken with respect to the skew-symmetric part plus the diagonal part of the upper-left block is analyzed in detail. Since action of the preconditioner involves solut...
متن کاملResidual reduction algorithms for nonsymmetric saddle point problems
In this paper, we introduce and analyze Uzawa algorithms for non-symmetric saddle point systems. Convergence for the algorithms is established based on new spectral results about Schur complements. A new Uzawa type algorithm with optimal relaxation parameters at each new iteration is introduced and analyzed in a general framework. Numerical results supporting the efficiency of the algorithms ar...
متن کاملBlock LU Preconditioners for Symmetric and Nonsymmetric Saddle Point Problems
In this paper, a block LU preconditioner for saddle point problems is presented. The main diierence between the approach presented here and that of other studies is that an explicit, accurate approximation of the Schur complement matrix is eeciently computed. This is used to compute a preconditioner to the Schur complement matrix that in turn deenes a preconditioner for a global iteration. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2010
ISSN: 0377-0427
DOI: 10.1016/j.cam.2010.06.001